课 题:数列复习小结
教学目的:
1.系统掌握数列的有关概念和公式。
2.了解数列的通项公式与前n项和公式的关系
3.能通过前n项和公式求出数列的通项公式。
授课类型:复习课
课时安排:2课时
教学过程:
一、本章知识结构
二、知识纲要
(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.
(2)等差、等比数列的定义.
(3)等差、等比数列的通项公式.
(4)等差中项、等比中项.
(5)等差、等比数列的前n项和公式及其推导方法.
三、方法总结
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.
2.等差、等比数列中,a、、n、d(q)、 “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.
3.求等比数列的前n项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.
4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.
四、知识精要:
1、数列
[数列的通项公式] [数列的前n项和]
2、等差数列
[等差数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。
[等差数列的判定方法]
1. 定义法:对于数列,若(常数),则数列是等差数列。
2.等差中项:对于数列,若,则数列是等差数列。
[等差数列的通项公式]
如果等差数列的首项是,公差是,则等差数列的通项为。
[说明]该公式整理后是关于n的一次函数。
[等差数列的前n项和] 1. 2.
[说明]对于公式2整理后是关于n的没有常数项的二次函数。
[等差中项]
如果,,成等差数列,那么叫做与的等差中项。即:或
[说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。
[等差数列的性质]
1.等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有
2. 对于等差数列,若,则。
也就是:,如图所示:
3.若数列是等差数列,是其前n项的和,,那么,,成等差数列。如下图所示:
3、等比数列
[等比数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示()。
[等比中项]
如果在与之间插入一个数,使,,成等比数列,那么叫做与的等比中项。
也就是,如果是的等比中项,那么,即。
[等比数列的判定方法]
(一) 定义法:对于数列,若,则数列是等比数列。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源