2018年中考数学试题分类汇编考点24:平行四边形
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共27道小题,约8390字。2018中考数学试题分类汇编:考点24 平行四边形
一.选择题(共9小题)
1.(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )
A.50° B.40° C.30° D.20°
【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【解答】解:∵∠ABC=60°,∠BAC=80°,
∴∠BCA=180°﹣60°﹣80°=40°,
∵对角线AC与BD相交于点O,E是边CD的中点,
∴EO是△DBC的中位线,
∴EO∥BC,
∴∠1=∠ACB=40°.
故选:B.
2.(2018•宜宾)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
【分析】想办法证明∠E=90°即可判断.
【解答】解:如图,∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD+∠ADC=180°,
∵∠EAD= ∠BAD,∠ADE= ∠ADC,
∴∠EAD+∠ADE= (∠BAD+∠ADC)=90°,
∴∠E=90°,
∴△ADE是直角三角形,
故选:B.
3.(2018•黔南州)如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
A.26cm B.24cm C.20cm D.18cm
【分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.
【解答】解:∵AC=4cm,若△ADC的周长为13cm,
∴AD+DC=13﹣4=9(cm).
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴平行四边形的周长为2(AB+BC)=18cm.
故选:D.
4.(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.15 B.18 C.21 D.24
【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;
【解答】解:∵平行四边形ABCD的周长为36,
∴BC+CD=18,
∵OD=OB,DE=EC,
∴OE+DE= (BC+CD)=9,
∵BD=12,
∴OD= BD=6,
∴△DOE的周长为9+6=15,
故选:A.
5.(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )
A.20 B.16 C.12 D.8
【分析】首先证明:OE= BC,由AE+EO=4,推出AB+BC=8即可解决问题;
【解答】解:∵四边形ABCD是平行四边形,
∴OA=OC,
∵AE=EB,
∴OE= BC,
∵AE+EO=4,
∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=16,
故选:B.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源