2016-2017学年高中数学必修三模块综合测评卷1
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共22道小题,约6340字。
模块综合测评
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.问题:①有1 000个乒乓球分别装在3种箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.
方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法能配对的是( )
A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ
C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ
【解析】 本题考查三种抽样方法的定义及特点.
【答案】 B
2.从装有2个红球和2个白球的红袋内任取两个球,那么下列事件中,互斥事件的个数是( )
①至少有一个白球;都是白球.
②至少有一个白球;至少有一个红球.
③恰好有一个白球;恰好有2个白球.
④至少有1个白球;都是红球.
A.0 B.1
C.2 D.3
【解析】 由互斥事件的定义知,选项③④是互斥事件.故选C.
【答案】 C
3.在如图1所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )
图1
A.6 B.8
C.10 D.14
【解析】 由甲组数据的众数为14,得x=y=4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10,故选C.
【答案】 C
4.101110(2)转化为等值的八进制数是( )
A.46 B.56
C.67 D.78
【解析】 ∵101110(2)=1×25+1×23+1×22+1×2=46,46=8×5+6,5=8×0+5,∴46=56(8),故选B.
【答案】 B
5.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下:(单位:cm)
甲:9.0,9.2,9.0,8.5,9.1,9.2;
乙:8.9,9.6,9.5,8.5,8.6,8.9.
据以上数据估计两人的技术的稳定性,结论是( )
A.甲优于乙 B.乙优于甲
C.两人没区别 D.无法判断
【解析】 x甲=16(9.0+9.2+9.0+8.5+9.1+9.2)=9.0,
x乙=16(8.9+9.6+9.5+8.5+8.6+8.9)=9.0;
s2甲=16[(9.0-9.0)2+(9.2-9.0)2+(9.0-9.0)2+(8.5-9.0)2+(9.1-9.0)2+(9.2-9.0)2]=0.346,
s2乙=16[(8.9-9.0)2+(9.6-9.0)2+(9.5-9.0)2+(8.5-9.0)2+(8.6-9.0)2+(8.9-9.0)2]=1.046.
因为s2甲<s2乙,所以甲的技术比乙的技术稳定.
【答案】 A
6.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如图2所示,则从文学社中任意选1名学生,他参加活动次数为3的概率是( )
图2
A.110 B.310
C.610 D.710
【解析】 从中任意选1名学生,他参加活动次数为3的概率是30100=310.
【答案】 B
7.(2014•北京高考)当m=7,n=3时,执行如图3所示的程序框图,输出的S值为( )
图3
A.7 B.42
C.210 D.840
【解析】 程序框图的执行过程如下:
m=7,n=3时,m-n+1=5,
k=m=7,S=1,S=1×7=7;
k=k-1=6>5,S=6×7=42;
k=k-1=5=5,S=5×42=210;
k=k-1=4<5,输出S=210.故选C.
【答案】 C
8.已知函数f(x)=x2-x-2,x∈[-5,5],那么在区间[-5,5]内任取一点x0,使f(x0)≤0的概率为( )
A.0.1 B.23
C.0.3 D.25
【解析】 在[-5,5]上函数的图象和x轴分别交于两点(-1,0),(2,0),当x0∈[-1,2]时,f(x0)≤0.
P=区间[-1,2]的长度区间[-5,5]的长度=310=0.3.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源