《古典概型》教案5
- 资源简介:
约1720字。
第一课时 3.2 古典概型
教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.
教学难点:古典概型是等可能事件概率.
教学过程:
一、复习准备:
1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).
(1)必然事件:必然事件是每次试验都一定出现的事件.
不可能事件:任何一次试验都不可能出现的事件称为不可能事件.
(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.
二、讲授新课:
1. 教学:基本事件(要正确区分事件和基本事件)
定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.
基本事件的两个特点:
(1) 任何两个基本事件是互斥的;
(2) 任何事件(除不可能事件)都可以表示成基本事件的和.
例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.
2. 教学:古典概型的定义
古典概型有两个特征:
(1)试验中所有可能出现的基本事件只有有限个;
(2)各基本事件的出现是等可能的,即它们发生的概率相同.
我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型
注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.
例2:掷两枚均匀硬币,求出现两个正面的概率.
取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.
这里四个基本事件是等可能发生的,故属古典概型.
n=4, m=1, P=1/ 4
对于古典概型,任何事件的概率为:
P120例2:(关键:这个问题什么情况下可以看成古典概型的)
P120例3:(要引导学生验证是否满足古典概型的两个条件)
3. 小结:古典概型的两个特点:有限性和等可能性
三、巩固练习:
1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源