《指数运算的性质》教学设计
- 资源简介:
约5020字。
教学设计
2.2 指数运算的性质
导入新课
思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题——指数运算的性质.
思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数运算的性质.
推进新课
新知探究
提出问题
①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…是2的什么近似值?
②多媒体显示以下图表:同学们从下面的两个表中,能发现什么样的规律?
2的过剩近似值
52的近似值
1.5 11.180 339 89
1.42 9.829 635 328
1.415 9.750 851 808
1.414 3 9.739 872 62
1.414 22 9.738 618 643
1.414 214 9.738 524 602
1.414 213 6 9.738 518 332
1.414 213 57 9.738 517 862
1.414 213 563 9.738 517 752
… …
的近似值
2的不足近似值
9.518 269 694 1.4
9.672 669 973 1.41
9.735 171 039 1.414
9.738 305 174 1.414 2
9.738 461 907 1.414 21
9.738 508 928 1.414 213
9.738 516 765 1.414 213 5
9.738 517 705 1.414 213 56
9.738 517 736 1.414 213 562
… …
③你能给上述思想起个名字吗?
④一个正数的无理数次幂到底是一个什么性质的数呢?如 ,根据你学过的知识,能作出判断并合理地解释吗?
⑤借助上面的结论你能说出一般性的结论吗?
活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:
问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源