《解决有关测量高度的问题》教学设计
- 资源简介:
约3030字。
教学设计
1.2.2 解决有关测量高度的问题
从容说课
本节的例3、例4和例5是有关测量底部不可到达的建筑物等的高度的问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法去解决,但常常用正弦定理和余弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.在例3中是测出一点C到建筑物的顶部A的距离CA,并测出点C观察A的仰角;在例4中是计算出AB的长;在例5中是计算出BC的长,然后转化为解直角三角形的问题.
本节课主要是研究解斜三角形在测量中的应用,关于测量问题,一是要熟悉仰角、俯角的意义,二是要会在几个三角形中找出已知与未知之间的关系,逐步逐层转化,最终归结为解三角形的问题.
教学重点 1.结合实际测量工具,解决生活中的测量高度问题;
2.画出示意图是解应用题的关键,也是本节要体现的技能之一,需在反复的练习和动手操作中加强这方面能力.日常生活中的实例体现了数学知识的生动运用,除了能运用定理解题之外,特别要注重数学表达需清晰且富有逻辑,可通过合作学习和相互提问补充的方法来让学生多感受问题的演变过程.
教学难点 能观察较复杂的图形,从中找到解决问题的关键条件;
教具准备 直尺和投影仪
三维目标
一、知识与技能
能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.
二、过程与方法
本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间.
三、情感态度与价值观
进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力.
教学过程
导入新课
师 设问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.
推进新课
【例1】AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.
[合作探究]
师 这个建筑物就不好到达它的底部去测量,如果好去的话,那就直接用尺去量一下就行了,那么大家思考一下如何去测量这个建筑物的高呢?
生 要求建筑物AB的高,我只要能把AE的长求出来,然后再加上测角仪的高度EB的长就行了.
师 对了,求AB长的关键是先求AE,那谁能说出如何求AE?
生 由解直角三角形的知识,在△ADC中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长.
师 那现在的问题就转化成如何去求CA的长,谁能说说?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源