《导数的概念》教学设计1
- 资源简介:
约3850字。
《导数的概念》教学设计
辽宁省抚顺市第一中学 李 明
课型:新授课
一、教学内容解析
导数是微积分学的核心概念之一,导数是导函数的简称,本质仍是函数,其实也就是微商 .导数不仅是数学知识,也是一种数学思想,也蕴含着函数思想和极限的思想方法,本节内容的核心是用平均变化率的极限来刻划瞬时变化率,从课标要求与教材的编写看,淡化了极限的形式化定义,不把导数作为一种特殊的极限来处理,而是直接通过实例来反映导数的思想和本质,因此,让学生充分体验“极限的过程及研究的思想方法”为本节课的重点.
导数属于事实型知识——函数的瞬时变化率是客观存在的,用平均变化率的极限来刻划,并用形式化的极限符号表示只是我们研究导数的方法.导数为研究变量和函数提供了重要的方法和手段,具有将复杂问题归纳为简单规则和步骤的非凡能力,不仅是研究初等函数最有效的工具,还是研究微积分学的必备基础,也是研究各种科学的工具,黎曼曾说过“只有在微积分发明之后,物理学才成为一门科学”, 天地通用微积分.
变量和函数在自然界和社会中有着几乎地处不在的实际背景,所以高中学生不论他将来是否进入高校学习,都应学习导数及其应用的内容,并应用它考察和理解实际现象中的变化.毫不夸张地说,不学或未学懂微积分,学生思维难以达到较高的水平,从某种意义上看,对导数所蕴含的数学思想方法的研究价值,远高于对其知识的学习.通过本课导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟“逼近”思想、数形结合思想和函数思想,进一步体会数学的本质.
二、教学目标设置
知识与技能:
(1)知道平均变化率与瞬时变化率的关系;能正确区分平均变化率与瞬时变化率;会描述导数概念的实际背景,知道瞬时变化率就是导数,知道函数在某点的导数与在某个区间内的导函数的关系,体会导数的思想及其内涵.
(2)会依据定义求简单函数在某点处的导数,能初步按定义归纳求函数在某点处导数的基本步骤.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源