《数列求和问题》教案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修五教案
  • 文件类型: doc
  • 资源大小: 198 KB
  • 资源评级:
  • 更新时间: 2014/12/12 21:23:18
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约4120字。

  数列求和问题•教案
  教学重点与难点
  重点:把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和.
  难点:寻找适当的变换方法,达到化归的目的.
  教学过程设计
  (一)复习引入
  师:等差数列和等比数列既是最基本的数列又是最重要的数列.我们已经推出了求其前n项和的公式,公式分别是什么?
  师:我们学习新知识不仅要记住其结论,正确地运用它解决问题,而且要善于在学习新知识的过程中体会研究问题的方法,逐渐地学会思考、学会学习.
  (不失时机地对学生进行学法指导非常必要)
  回忆一下推导这两个公式的方法,你有什么收获?
  (留给学生回忆及思考的时间)
  生甲:推导等差数列前n项和公式所用的方法是:先把Sn中各项“正着”写出来,再把Sn中各项次序反过来写出,两式相加.由于对应项和都为(a1+an),所以2Sn=n(a1+an),进而求出Sn.
  师:推导方法是将要解决的问题通过“逆序相加”的方法转化为我们熟悉的常数列求和问题.(渗透转化的思想)
  生乙:推导等比数列前n项和所用的方法是:将Sn的各项依次写出,再把这个式子的两边同时乘以q,然后两式“错项相减”,相减后等号右边只剩下两项,进而求得Sn.
  师:解决此问题需要同学们有敏锐的观察能力.把Sn=a1+a1q+…+a1qn-2+a1qn-2的两边分别乘以公比q,就得到各项后面相邻的一项,因而用“错项相减”的方法就可以消去相同的项.
  以上两种求和的思路在解决某些特殊数列求和问题时经常用到.这节课我们就来研究既非等差数列又非等比数列的一些特殊数列的求和问题.(板书课题)
  (二)新课
  例1  求分母为3,包含在正整数m与n(m<n)之间的所有不可约的分数之和.
  师:分母为3,包含在正整数m与n之间的所有不可约分数有哪些?
  师:本题实质上让我们解决什么问题?
  生:求由这些分数构成的数列的各项和.
  此数列是我们熟悉的等差数列或等比数列吗?(稍微停顿)都不是.请同学们观察此数列有什么特点,可用什么方法求和?
  生甲:此数列的第一项与最后一项的和是m+n,第二项与倒数第二项的和也是m+n,依此类推.根据此数列的特点,可以用刚才复习过的“逆序相加法”求和.
  (学生叙述解法一,教师板书)

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源