高中数学北师大版必修四+第一章+三角函数+++课件+课后巩固练习(28份)
1.1.ppt
1.2.ppt
1.3.ppt
1.4.1&1.4.2.ppt
1.4.3.ppt
1.5.1&1.5.2.ppt
1.5.3.ppt
1.6.ppt
1.7.1&1.7.2.ppt
1.7.3.ppt
1.8.1.ppt
1.8.2.ppt
1.9.ppt
1.ppt
单元质量评估(一).doc
课后巩固作业(八) 1.6.doc
课后巩固作业(二) 1.2.doc
课后巩固作业(九) 1.7.1&1.7.2.doc
课后巩固作业(六) 1.5.1&1.5.2.doc
课后巩固作业(七) 1.5.3.doc
课后巩固作业(三) 1.3.doc
课后巩固作业(十) 1.7.3.doc
课后巩固作业(十二) 1.8.2.doc
课后巩固作业(十三) 1.9.doc
课后巩固作业(十一) 1.8.1.doc
课后巩固作业(四) 1.4.1&1.4.2.doc
课后巩固作业(五) 1.4.3.doc
课后巩固作业(一) 1.1.doc
课后巩固作业(十三)
(30分钟 50分)
一、选择题(每小题4分,共16分)
1.一根长为l cm的线,一端固定,另一端悬挂着一个小球,小球摆动时离开平衡位置的位移s(cm)与时间t(s)的函数关系式是 ,其中g是重力加速度,当小球摆动的周期是1 s时,线长等于( )
(A) (B) (C) (D)
2.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+ )+b(A>0,ω>0,| |< )的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为( )
(A)f(x)=2sin( )+7(1≤x≤12,x∈N+)
(B)f(x)=9sin( )(1≤x≤12,x∈N+)
(C)f(x)=2 sin +7(1≤x≤12,x∈N+)
(D)f(x)=2sin( )+7(1≤x≤12,x∈N+)
3.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+ )(A>0,ω>0,0< < )的图像如图所示,则当 秒时,电流强度是( )
课后巩固作业(五)
(30分钟 50分)
一、选择题(每小题4分,共16分)
1.(2011•宿州高一检测)sin480°的值为( )
(A) (B) (C) (D)
2.若sin(π-α)= ,则sin(-5π+α)的值是( )
(A) (B) (C) (D)0
3.已知 则cos( )的值是( )
(A) (B) (C)0 (D)不确定
4.若x∈[-π,π]且 则x等于( )
(A) 或 (B) 或
(C) 或 (D) 或
二、填空题(每小题4分,共8分)
5.化简: ________.
6.若α是第一象限角,则sinα+cosα的值与1的大小关系是________.
三、解答题 (每小题8分,共16分)
7.(2011•郑州高一检测)已知角α的终边经过点P(1, ),
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.与-2 006°终边相同的角可以是下列中的( )
(A)1 972° (B)-1 972°
(C)-206° (D)206°
2.(2011• 冀州高一检测)给出下列各三角函数值:
①sin(-1 000°);②cos(-2 200°);③tan(-10);
④ ,其中符号为负的有( )
(A)① (B)② (C)③ (D)④
3.若α是第四象限的角,则180°-α是( )
(A)第一象限的角 (B)第二象限的角
(C)第三象限的角 (D)第四象限的角
4.函数f(x)=-cosx•lnx2的部分图像大致是图中的( )
一、选择题(每小题4分,共16分)
1.若钟摆的高度h(mm)与时间t(s)之间的函数关系如图所示.
则该函数值重复出现一次所需的时间T及在t=25 s时钟摆的高度为( )
(A)2 s,10 mm (B)1 s,20 mm
(C)1 s,10 mm (D)2 s,20 mm
2.课外活动上,有4个同学在进行报数游戏,他们围成一圈,甲报“1”、乙报“2”、丙报“3”、丁报“4”,每人报的数总比前一个人多1,问报45的是( )
(A)甲 (B)乙 (C)丙 (D)丁
3.自行车大链轮有48齿,小链轮有20齿,当大链轮转过一周时,小链轮转过
( )
(A)1周 (B)2周 (C)2.4周 (D) 周
4.科学家进行一项实验,每隔6小时做一次记录,如果第11次记录时,
课后巩固作业(二)
(30分钟 50分)
一、选择题(每小题4分,共16分)
1.(2011•乌鲁木齐高一检测)与405°角终边相同的角是( )
(A)k×360°-45°,k∈Z
(B)k×360°-405°,k∈Z
(C)k×360°+45°,k∈Z
(D)k×180°+45°,k∈Z
2.若α是钝角,则θ=k×180°+α,k∈Z是( )
(A)第二象限角
(B)第三象限角
(C)第二象限角或第三象限角
(D)第二象限角或第四象限角
3.(2011•哈尔滨高一检测)在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( )
(A)0个 (B)1个
(C)2个 (D)3个
4.经过3小时35分钟,时针与分针转过的度数之差是( )
(A)1 182.5° (B)-1 182.5°
(C)1 182.3° (D)-1 182.3°
二、填空题(每小题4分,共8分)
一、选择题(每小题4分,共16分)
1.(2011•重庆高一检测)已知α= π,则α的终边在( )
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
2.把-1 485°写成2kπ+α(0≤α<2π,k∈Z)的形式是( )
(A)-8π+ (B)-8π-
(C)-10π- (D)-10π+
3.下列角的终边相同的是( )
(A) 与 ,k∈Z
(B) ,k∈Z与
(C) 与 ,k∈Z
(D)(2k+1)π与3kπ,k∈Z
4.在单位圆中,面积为1的扇形所对的圆心角为( )
(A)1弧度 (B)2弧度
(C)3弧度 (D)4弧度
二、填空题(每小题4分,共8分)
5.(2011•三明高一检测)把22°30′化为弧度的结果是______.
6.(2011•琼海高一检测)设扇形的周长为8 cm,面积为4 cm2,则扇形的圆心角的弧度数是_______.
三、解答题(每小题8分,共16分)
一、选择题(每小题4分,共16分)
1.设a=sin105°•cos230°,b=sin2•cos1,则( )
(A)a>0,b>0 (B)a>0,b<0
(C)a<0,b>0 (D)a<0,b<0
2.(2011•乌鲁木齐高一检测)若sinθ<0,cosθ>0,则 是( )
(A)第二象限角 (B)第三象限角
(C)第二或第四象限角 (D)第三或第四象限角
3.若角θ的终边过点P(a,8),且cos (2kπ+θ)= ,k∈Z,则a的值为( )
(A)6 (B)-6 (C)-10 (D)10
4.函数 的值域是( )
(A){-2,2} (B){-1,0,1}
(C){-2,0,2} (D){-1,1}
二、填空题(每小题4分,共8分)
5.(2011•长春高一检测)若角α的终边经过点P(1,- 2),则sinα的值为_____.
6.(2011•重庆高一检测)已知f(x)是定义在实数集上的函数,且f(x+1)=-f(x),若f(1)=4,则f(2 010)=________.
三、解答题(每小题8分,共16分)
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源