《用三种方式表示二次函数》学案
- 资源简介:
约2560字。
§2.5 用三种方式表示二次函数
学习目标:
经历三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系和各自不同点;掌握变量之间的二次函数关系,解决二次函数所表示的问题;掌握根据二次函数不同的表达方式,从不同的侧面对函数性质进行研究.
学习重点:
能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究.函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题.
学习难点:
用三种方式表示二次函数的实际问题时,忽略自变量的取值范围是常见的错误.
学习方法:
讨论式学习法。
学习过程:
一、做一做:
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2,y随x的而变化的规律是什么?你能分别用函数表达式,表格和图象表示出来吗?比较三种表示方式,你能得出什么结论?与同伴交流.
二、试一试:
两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的? ?用你能分别用函数表达式,表格和图象表示这种变化吗?
三、积累:
表示方法 优点 缺点
解析法
表格法
图像法
三者关系
【例1】已知函数y=x2+bx+1的图象经过点(3,2).
(1)求这个函数的表达式;
(2)画出它的图象,并指出图象的顶点坐标;
(3)当x>0时,求使y≥2的x的取值范围.
【例2】 一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.
(1)求二次函数的表达式;
(2)在同一坐标系中画出两个函数的图象;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源