《一元一次方程模型》教案
- 资源简介:
约1260字。
教学过程
一、创设情境,展现方程是刻画现实生活的有效模型
1.(出示投影1).
如图是一个长方体形的电视机包装盒,它的底面宽为1米,长为1.2米,且包装盒的表面积为6.8平方米,求这个电视机包装盒的高。
学生活动:学生分小组讨论.
师生共同分析:设包装盒的高为x米,用代数式表示这六个长方形面积的和为(2x+2.4x+2.4)平方米,而我们已知这个包装盒的表面积为6.8平方米,依题意得:2x+2.4x+2.4=6.8
2.投影课本P103的插图并提问:铅笔多少钱1枝?
学生活动:分析等量关系,尝试列出如问题1一样的式子。
教师活动:引导学生分析得到:4x+(x+4)=10-2
3.引入方程概念.
⑴在等式2x+2.4x+2.4=6.8中,2,2.4,6.8叫已知数,字母x表示的数叫未知数。
⑵我们把含有未知数的等式叫作方程,如:x+5=8,x-2y=6,3x+2y=120中,x、y都是未知数,这些等式都是方程。
⑶像问题1和问题2那样,把所要求的量用字母x(或y等)表示,根据问题中的数量关系列出方程,这叫作建立方程模型。
二、议一议,认识一元一次方程
1.展示出上述列出的方程:
2x+2.4x+2.4=6.8;4x+(x+4)=10-2.
2.学生活动:分组讨论,以上的方程有什么共同特点。
3.组织学生进行全班交流,得出以上方程的特点是:⑴方程中不含分母或分母中不含未知数;⑵只含有一个未知数;⑶未知数的指数都是1。
4.归纳一元一次方程的概念:只含有一个未知数,并且未 知数的次数是1的整式方程叫作一元一次方程。
能使方程左右两边的值相等的未知数的值叫作方程的解,求方程的解的过程叫作解方程。
5.学生活动:判断下列各式是不是方程,如果是,指出哪些是一元一次方程?如果不是,说明为什么?
⑴5x-3=x+3,⑵2y2+3y-1=0,⑶x+y=5,⑷2x+1, ⑸ 32x=3,⑹0.3x+2=23x
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源