《指数函数的概念》教案1
- 资源简介:
约1400字。
课 题:指数函数的概念
【教学目标】
1. 通过实际问题了解指数函数模型的实际背景,理解指数函数的概念和意义.
2. 在学习的过程中体会研究具体函数的过程和方法.
3.让学生了解数学来自生活,数学又服务于生活得哲理;培养学生观察问题、分析问题的能力.
【教学重点】
指数函数定义及其理解.
【教学难点】
指数函数的定义及其理解.
【教学步骤】
(一)引入课题
引例1 任何有机体都是由细胞作为基本单位组成的,每个细胞每次分裂为2个,则1个细胞第一次分裂后变为2个细胞,第二次分裂就得到4个细胞,第三次分裂后就得到8个细胞……
问题: 1个细胞分裂 次后,得到的细胞个数 与 的关系式是什么?
分裂次数 细胞个数
……
由上面的对应关系,我们可以归纳出,第 次分裂后,细胞的个数为 .
这个函数的定义域是非负整数集,由 ,任给一个 值,我们就可以求出对应的 值.
引例2 一种放射性元素不断衰变为其他元素,每经过一年剩余的质量约为原来的84%.
问题:若设该放射性元素最初的质量为1,则 年后的剩余量 与 的关系式是什么?
时间 剩余质量
经过1年
经过2年
经过3年
……
由上面的对应关系,我们可以归纳出,经过 年后,剩余量 .
问题:上面两个实例得到的函数解析式有什么共同特征?
它们的自变量都出现在指数位置上,底数是一个大于0且不等于1的常量. 我们称这样的函数为指数函数.
(二)讲授新课
1.指数函数的定义:
一般地,形如 的函数,叫做指数函数,其中 是自变量, 是不等于1的正的常数.
说明:(1)由于我们已经将指数幂推广到实数指数幂,因此当 >0时,自变量 可以取任意的实数,因此指数函数的定义域是R,即 .
(2)为什么要规定底数 呢.
因为当 时,若 ,则 恒为0;若 ≤0,则 无意义.
而当 时, 不一定
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源