《等差数列的前n项和》教案2
- 资源简介:
约3320字。
课题 等差数列的前n项和(一)
教学目标:
掌握等差数列前n项和公式及其获取思路,会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题;提高学生的推理能力,增强学生的应用意识.
教学重点:
等差数列前n项和公式的推导、理解及应用.
教学难点:
灵活应用等差数列前n项公式解决一些简单的有关问题.
教学过程:
Ⅰ.复习回顾
经过前面的学习,我们知道,在等差数列中:
(1)an-an-1=d(n≥1),d为常数.
(2)若a,A,b为等差数列,则A=a+b2 .
(3)若m+n=p+q,则am+an=ap+aq.(其中m,n,p,q均为正整数)
Ⅱ.讲授新课
随着学习数列的深入,我们经常会遇到这样的问题.
例:如图,一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V形架上共放着多少支铅笔?
这是一堆放铅笔的V形架,这形同前面所接触过的堆放钢管的示意图,看到此图,大家都会很快捷地找到每一层的铅笔数与层数的关系,而且可以用一个式子来表示这种关系,利用它便可以求出每一层的铅笔数.那么,这个V形架上共放着多少支铅笔呢?这个问题又该如何解决呢?经过分析,我们不难看出,这是一个等差数求和问题?
首先,我们来看这样一个问题:1+2+3+…+100=?
对于这个问题,著名数学家高斯10岁时曾很快求出它的结果,你知道他是怎么算的吗?
高斯的算法是:首项与末项的和:1+100=101,
第2项与倒数第2项的和:2+99=101,
第3项与倒数第3项的和:3+98=101,
……
第50项与倒数第50项的和:50+51=101,于是所求的和是101×1002 =5050.
这个问题,它也类似于刚才我们所遇到的问题,它可以看成是求等差数列1,2,3,…,n,…的前100项的和.在上面的求解中,我们发现所求的和可用首项、末项及项数n来表示,且任意的第k项与倒数第k项的和都等于首项与末项的和,这就启发我们如何去求一般等差数列的前n项的和.如果我们可归纳出一计算式,那么上述问题便可迎刃而解.
设等差数列{an}的前n项和为Sn,即Sn=a1+a2+…+an ①
把项的次序反过来,Sn又可写成Sn=an+an-1+…+a1 ②
①+② 2Sn=(a1+an)+(a2+an-1)+…+(an+a1)
又∵a2+an-1=a3+an-2=a4+an-3=…=an+a1
∴2Sn=n(a1+an)
即:Sn=n(a1+an)2
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源