《数列通项公式求法》教案
- 资源简介:
约1280字。
数列的通项公式求法
[教学目标]
1、知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前 项和 与 的关系
2、过程与方法:经历数列知识的感受及理解运用的过程。
3、情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
[教学重点] 掌握简单递推数列的通项公式的求法.
[教学难点] 熟悉递推公式模型,灵活应用求解通项
[能力要求]
有关数列的试题在每年的高考试题中一般是 1 大 1 小(或 2小),超过本章在教学中所占课时比例,这是因为数列知识是考查学生转化与化归、分类讨论、推理论证及探索问题能力的重要题源,容易命制背景新颖的试题,较好体现高考的选拔能力。
[教学过程]
一、复习引入:
1、通项公式法
如果数列 的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。如数列 的通项公式为 , 的通项公式为 .
2、图象法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.
3、递推公式法
递推公式:如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式也是给出数列的一种方法。如下数字排列的一个数列:3,5,8,13,21,34,55,89
递推公式为:
4、列表法 简记为
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源