《函数奇偶性的专题复习》教案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修一教案
  • 文件类型: doc
  • 资源大小: 239 KB
  • 资源评级:
  • 更新时间: 2011/10/27 12:21:29
  • 资源来源: 会员转发
  • 资源提供: qhzgzz [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约9280字。

  《函数奇偶性的专题复习》教案
  一奇偶函数的概念
  1.奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x)〔或f(x)+ f(-x)=0〕,则称f(x)为奇函数.
  2.偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)〔或f(x)-f(-x)=0〕,则称f(x)为偶函数
  3、函数奇偶性定义的几点说明
  (1)判断函数的奇偶性有时可以用定义的等价形式:  ,
  (2)如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性
  (3)偶函数(奇函数)的定义中“对D内任意一个x,都有-x∈D,且f(-x)=f(x)(f(-x)=-f(x))”,这表明f(-x)与f(x)都有意义,即x、-x同时属于定义域.因此偶(奇)函数的定义域是关于坐标原点对称的.也就是说,定义域关于坐标原点对称是函数具有奇偶性的前提条件.
  (4)存在既是奇函数又是偶函数的函数,即f(x)=0,x∈D,这里定义域D是关于坐标原点对称的非空数集.
  (5)函数按奇偶性可以分为四类:奇函数,偶函数,既是奇函数又是偶函数,既不是奇函数又不是偶函数.
  【经典习题解答】
  1、下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是   (    )
  A.1       B.2            C.3       D.4
  分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误
  奇函数的图象关于原点对称,但不一定经过原点,因此②不正确
  若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A
  说明:既奇又偶函数的充要条件是定义域关于原点对称且函数
  教案

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源