《相互独立事件同时发生的概率》教案2
- 资源简介:
约2230字。
相互独立事件同时发生的概率
【教学目的】
1.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率;
2.通过对概率知识的学习,了解偶然性寓于必然性之中的辨证唯物主义思想;
【教学重点】
用相互独立事件的概率乘法公式计算一些事件的概率;
【教学难点】
互斥事件与相互独立事件的区别;
【教学用具】
投影仪、多媒体电脑等。
【教学过程】
一、提出问题
有两门高射炮,已知每一门击中侵犯我领空的美军侦察机的概率均为0.7,假设这两门高射炮射击时相互之间没有影响。如果这两门高射炮同时各发射一发炮弹,则它们都击中美军侦察机的概率是多少?(板书课题)
二、探索研究
显然,根据课题,本节课主要研究两个问题:一是相互独立事件的概念,二是相互独立事件同时发生的概率。
(一)相互独立事件
1.中国福利彩票,是由01、02、03、…、30、31这31个数字组成的,买彩票时可以在这31个数字中任意选择其中的7个,如果与计算机随机摇出的7个数字都一样(不考虑顺序),则获一等奖。若有甲、乙两名同学前去抽奖,则他们均获一等奖的概率是多少?
(1)如果在甲中一等奖后乙去买彩票,则也中一等奖的概率为多少?(P= )
(2)如果在甲没有中一等奖后乙去买彩票,则乙中一等奖的概率为多少?(P= )
2.一个袋子中有5个白球和3个黑球,从袋中分两次取出2个球。设第1次取出的球是白球叫做事件A,第2次取出的球是白球叫做事件B。
(1)若第1次取出的球不放回去,求事件B发生的概率;
(如果事件A发生,则P(B)= ;如果事件B不发生,则P(B)= )
(2)若第1次取出的球仍放回去,求事件B发生的概率。
(如果事件A发生,则P(B)= ;如果事件B不发生,则P(B)= )
相互独立事件:如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源