约1320字。
第九课时 分段函数
【学习导航】
知识网络
分段函数
学习要求
1、了解分数函数的定义;
2、学会求分段函数定义域、值域;
3、学会运用函数图象来研究分段函数;
自学评价:
1、分段函数的定义
在函数定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数;
2、分段函数定义域,值域;
分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”)
3、分段函数图象
画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;
【精典范例】
一、含有绝对值的解析式
例1、已知函数y=|x-1|+|x+2|
(1)作出函数的图象。
(2)写出函数的定义域和值域。
【解】:
(1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x=1,第二个绝对值的分段点x=-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞)
所以已知函数可写为分段函数形式:
y=|x-1|+|x+2|=
在相应的x取值范围内,分别作出相应函数的图象,即为所求函数的图象。(图象略)
(2)根据函数的图象可知:函数的定义域为R,值域为[3,+∞)
二、实际生活中函数解析式问题
例2、某同学从甲地以每小时6千米的速度步行2小时到达乙地,在乙地耽搁1小时后,又以每小时4千米的速度步行返回甲地。写出该同学在上述过程中,离甲地的距离S(千米)和时间t(小时)的函数关系式,并作出函数图象。
【解】:
先考虑由甲地到乙地的过程:
0≤t≤2时, y=6t
再考虑在乙地耽搁的情况:
2<t≤3时, y=12
最后考虑由乙地返回甲地的过程:
3<t≤6时, y=12-4(t-3)
所以S(t)=
函数图象(略)
点评:某些实际问题的函数解析式常用分段函数表示,须针对自变量的分段变化情况,列出各段不同的解析式,再依据自变量的不同取值范围,分段画出函数的图象.
三、二次函数在区间上的最值问题
例3、已知函数f(x)=2x2-2ax+3在区间[-1,1]上有最小值,记作g(a).
(1)求g(a)的函数表达式
(2)求g(a)的最大值。
【解】:
对称轴x=
得g(a)
利用分段函数图象易得:g(a)max=3
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源