《正态分布、线性回归》复习教案
- 资源简介:
约4060字。
《正态分布、线性回归》复习教案
一、 知识梳理
1.正态分布的重要性
正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。
2.正态曲线及其性质
正态分布函数:,x∈(-∞,+∞)
3.标准正态曲线
标准正态曲线N(0,1)是一种特殊的正态分布曲线,,以及标准正态总体在任一区间(a,b)内取值概率。
4.一般正态分布与标准正态分布的转化
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
5.“小概率事件”和假设检验的基本思想
“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。
课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想。进行假设检验一般分三步:
第一步,提出统计假设。课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布;
第二步,确定一次试验中的取值a是否落入范围(μ-3σ,μ+3σ);
第三步,作出推断。如果a∈(μ-3σ,μ+3σ),接受统计假设;如果,由于这是小概率事件,就拒绝统计假设。
6.相关关系
研究两个变量间的相关关系是学习本节的目的。对于相关关系我们可以从下三个方面加以认识:⑴相关关系与函数关系不同。函数关系中的两个变量间是一种确定性关系。相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系。 ⑵函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。 ⑶函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化。
7.回归分析
本节所研究的回归分析是回归分析中最简单,也是最基本的一种类型——一元线性回归分析。
对于线性回归分析,我们要注意以下几个方面:
⑴回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。
⑵散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。
⑶求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源