约3050字。
《线性规划的实际应用》教案
教学目的:
1.能应用线性规划的方法解决一些简单的实际问题
2.增强学生的应用意识.培养学生理论联系实际的观点
教学重点:求得最优解
教学难点:求最优解是整数解
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教材分析:
线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小
教学过程:
一、复习引入:
1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解
3.用图解法解决简单的线性规划问题的基本步骤:
(1)根据线性约束条件画出可行域(即不等式组所表示的公共区域);
(2)设t=0,画出直线 ;
(3)观察、分析,平移直线 ,从而找到最优解 ;
(4)最后求得目标函数的最大值及最小值
4.求线性目标函数在线性约束条件下的最优解的格式与步骤:
(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)在可行域内求目标函数的最优解
二、讲解新课:
判断可行区域的方法: 由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)
三、讲解范例
例1 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源