约1550字。
数学归纳法
温州育英国际实验学校 朱文俊
教学目标
1.了解归纳法的意义,培养学生观察、归纳、发现的能力.
2.了解数学归纳法的原理,能以递推思想作指导,理解数学归纳法的操作步骤.
3.抽象思维和概括能力进一步得到提高.
教学重点与难点
重点:借助具体实例了解数学归纳的基本思想,掌握它的基本步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题。
难点:(1)学生不易理解数学归纳的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明;
(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。
教学过程
一、创设情景,提示课题。
1.谚语“天下乌鸦一般黑”的由来
2.对于数列 ,已知 , 通过对n=1,2,3,4前4项的归纳,猜想其通项公式为 。这个猜想是否正确需要证明。
二、研探新知
了解多米诺骨牌游戏,可得,只要满足以下两条件,所有多米诺骨牌就都能倒下:
(1)第一块骨牌倒下;
(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。
思考:你认为条件(2)的作用是什么?
可以看出,条件(2)事实上给出了一个递推关系:
当第k块倒下时,相邻的第k+1块也倒下。
这样,要使所有的骨牌全部倒下,只要保证(1)(2)成立。
2、用多米诺骨牌原理解决数学问题。
思考:你认为证明数列的通过公式是 这个猜想与上述多米诺骨牌游戏有相似性吗?你能类比多米诺骨牌游戏解决这个问题吗?
分析:
多米诺骨牌游戏原理 通项公式 的证明方法
(1)第一块骨牌倒下。 (1)当n=1时 ,猜想成立
(2)若第k块倒下时,则相邻的第k+1块也倒下。 (2)若当n=k时猜想成立,即 ,则当n=k+1时猜想也成立,即 。
根据(1)和 (2),可知不论有多少块骨牌,都能全部倒下。 根据(1)和(2),可知对任意的正整数n,猜想都成立。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源