约1420字。
等比数列复习
1、等比数列的定义
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.
注意(1)、q是指从第2项起每一项与前一项的比,顺序不要错,即
(2)、由定义可知,等比数列的任意一项都不为0,因而公比q也不为0.
(3)、公比q可为正数、负数,特别当q=1时,为常数列a1,a1,……;
q=-1时,数列为a1,-a1,a1,-a1,…….
(4)、要证明一个数列是等比数列,必须对任意n∈N+,
an+1÷an=q,或an÷an-1=q(n≥2)都成立.
2、等比数列的通项公式
由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳出an=a1qn-1.此式对n=1也成立.
3、等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.
4、等比数列的判定方法
(1)、an=an-1•q(n≥2),q是不为零的常数,an-1≠0 {an}是等比数列.
(2)、an2=an-1•an+1(n≥2, an-1,an,an+1≠0) {an}是等比数列.
(3)、an=c•qn(c,q均是不为零的常数) {an}是等比数列.
5、等比数列的性质
设{an}为等比数列,首项为a1,公比为q.
(1)、当q>1,a1>0或0<q<1,a1<0时,{an}是递增数列;当q>1,a1<0或0<q<1,a1>0时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源