函数图象与图象变换教案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 选修二教案
  • 文件类型: doc
  • 资源大小: 58 KB
  • 资源评级:
  • 更新时间: 2009/12/8 11:30:30
  • 资源来源: 会员转发
  • 资源提供: wulinb1 [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:
  约2250字。
     函数图象与图象变换
  函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.
  ●难点磁场
  (★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围.
  
  ●案例探究
  [例1]对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),(1)求证y=f(x)的图象关于直线x=a对称;(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和.
  命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目.
  知识依托:把证明图象对称问题转化到点的对称问题.
  错解分析:找不到问题的突破口,对条件不能进行等价转化.
  技巧与方法:数形结合、等价转化.
  (1)证明:设(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),又f(a+x)=f(a-x),∴f(2a-x0)=
  f[a+(a-x0)]=f[a-(a-x0)]=f(x0)=y0,∴(2a-x0,y0)也在函数的图象上,而 =a,∴点(x0,y0)与(2a-x0,y0)关于直线x=a对称,故y=f(x)的图象关于直线x=a对称.
  (2)解:由f(2+x)=f(2-x)得y=f(x)的图象关于直线x=2对称,若x0是f(x)=0的根,则4-x0也是f(x)=0的根,由对称性,f(x)=0的四根之和为8.
  [例2]如图,点A、B、C都在函数y= 的图象上,它们的横坐标分别是a、a+1、a+2.又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a).
  
  (1)求函数f(a)和g(a)的表达式;
  (2)比较f(a)与g(a)的大小,并证明你的结论.
  命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.
  知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口.
  错解分析:图形面积不会拆拼.
  技巧与方法:数形结合、等价转化.
  解:(1)连结AA′、BB′、CC′,则f(a)=S△AB′C=S梯形AA′C′C-S△AA′B′-S△CC′B
  = (A′A+C′C)= ( ),
  g(a)=S△A′BC′= A′C′•B′B=B′B= .
  
  ∴f(a)<g(a).
  ●锦囊妙计
  1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.
  2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.
  ●歼灭难点训练
  一、选择题
  1.(★★★★)当a≠0时,y=ax+b和y=bax的图象只可能是(    )
  
  2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离,x轴表示出发后的时间,则
 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源