2010届高三数学精品讲练:集合与简易逻辑试题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约1890字
2010届高三数学精品讲练:集合与简易逻辑
一、典型例题
例1、已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},求M∩N。
解题思路分析:
在集合运算之前,首先要识别集合,即认清集合中元素的特征。M、N均为数集,不能误认为是点集,从而解方程组。其次要化简集合,或者说使集合的特征明朗化。M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}
∴ M∩N=M={y|y≥1}
说明:实际上,从函数角度看,本题中的M,N分别是二次函数和一次函数的值域。一般地,集合{y|y=f(x),x∈A}应看成是函数y=f(x)的值域,通过求函数值域化简集合。此集合与集合{(x,y)|y=x2+1,x∈R}是有本质差异的,后者是点集,表示抛物线y=x2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例{y|y≥1}={x|x≥1}。
例2、已知集合A={x|x2-3x+2=0},B+{x|x2-mx+2=0},且A∩B=B,求实数m范围。
解题思路分析:
化简条件得A={1,2},A∩B=B B A
根据集合中元素个数集合B分类讨论,B=φ,B={1}或{2},B={1,2}
当B=φ时,△=m2-8<0
∴
当B={1}或{2}时, ,m无解
当B={1,2}时,
∴ m=3
综上所述,m=3或
说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B={1}或{2}时,不能遗漏△=0。
例3、用反证法证明:已知x、y∈R,x+y≥2,求 证x、y中至少有一个大于
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源