约1780字。
《锐角三角函数》教案5
第一课时 锐角三角函数(一)
教学目标
使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。并能应用这些概念解决一些实际问题。
教学过程
一、复习
由上节课例题若加改变得,若AC=160cm,∠C=31°,那么,AB的长度为多少呢?
同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。
二、新课
1.明确直角三角形边角关系的名称。
直角三角形ABC可以简记为Rt△ABC,我们已经知道∠C所对的边AB称为斜边,用c表示,另两条直角边分别为∠A的对边与邻边,用a、b表示。
如右图,在Rt△EFG中,请同学们分别写出∠E、∠F的对边和邻边。
2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。问题1如右图,△ABC和△A1B1C1中,若∠C=∠C1=∠90°, ∠A=∠A1,那么△ABC和△A1B1C1相似吗?与相等吗? BCAB 和B1C1A1B1 相等吗?
显然△ABC∽△A1BlCl,BCAB =B1C1A1B1 ,这说明在Rt△ABC中,只要一个锐角的大小不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边的比值是一个固定值。
这说明,在直角三角形中,一个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
3.锐角三角函数的概念。
Rt△ABC中
(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA= ∠A的对边斜边
(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA= ∠A的邻边斜边
(3)∠A的对边与邻边的比值是∠A的正切,记作tanA= ∠A的对边∠A的邻边
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源