约670字。
《相似三角形的判定(一)》教案
教学要点:了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;
提出问题:
如图27•2-1,在∆ABC中,点D是边AB的中点,DE∥BC,
DE交AC于点E ,∆ADE与∆ABC有什么关系?
分析:观察27•2-1易知AD= ,AE= ,∠A=∠A,∠ADE=∠ABC,∠AED=∠ACB,只需引导学生证得DE= 即可,学生不难想到过E作EF∥AB。
↓
∆ADE∽∆ABC,相似比为 。
延伸问题:
改变点D在AB上的位置,先让学生猜想∆ADE与∆ABC仍相似,然后再用几何画板演示验证。
↓
归纳:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似
探究方法:
探究1
在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。(学生小组交流)
在学生小组交流的基础上引导学生思考证明探究所得结论的途径。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源