约4370字 2.3.2离散型随机变量的方差
教学目标:
知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差
教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题
教具准备:多媒体、实物投影仪 。
教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。
授课类型:新授课
课时安排:2课时
教 具:多媒体、实物投影仪
内容分析:
数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.
回顾一组数据的方差的概念:设在一组数据 , ,…, 中,各数据与它们的平均值 得差的平方分别是 , ,…, ,那么 + +…+
叫做这组数据的方差
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示
2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
5. 分布列:
ξ x1 x2 … xi …
P P1 P2 … Pi …
6. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.
7.二项分布:ξ~B(n,p),并记 =b(k;n,p).
ξ 0 1 … k … n
P
…
…
8.几何分布: g(k,p)= ,其中k=0,1,2,…, .
ξ 1 2 3 … k …
P
…
…
9.数学期望: 一般地,若离散型随机变量ξ的概率分布为
ξ x1 x2 … xn …
P p1 p2 … pn …
则称 … … 为ξ的数学期望,简称期望.
10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令 … ,则有 … , … ,所以ξ的数学期望又称为平均数、均值
12. 期望的一个性质:
13.若ξ B(n,p),则Eξ=np
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源