高中数学选修4-4全一册同步精练卷(10份)

  • 手机网页: 浏览手机版
  • 资源类别: 北师大版 / 高中试卷 / 高中选修试卷
  • 文件类型: doc
  • 资源大小: 9.43 MB
  • 资源评级:
  • 更新时间: 2017/11/5 13:06:11
  • 资源来源: 会员转发
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

  此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。

高中数学全一册同步精练(打包10套)北师大版选修4_4
高中数学第1讲坐标系1.1平面直角坐标系1.1.1平面直角坐标系与曲线方程同步精练北师大版选修4_420171023317.doc
高中数学第1讲坐标系1.1平面直角坐标系1.1.2平面直角坐标轴中的伸缩变换同步精练北师大版选修4_420171023318.doc
高中数学第1讲坐标系1.2极坐标系1.2.1极坐标系的概念1.2.2点的极坐标与直角坐标的互化同步精练北师大版选修4_420171023319.doc
高中数学第1讲坐标系1.2极坐标系1.2.3_1.2.5同步精练北师大版选修4_420171023320.doc
高中数学第1讲坐标系1.3柱坐标系和球坐标系同步精练北师大版选修4_420171023321.doc
高中数学第2讲参数方程2.1参数方程的概念同步精练北师大版选修4_420171023323.doc
高中数学第2讲参数方程2.2直线和圆锥曲线的参数方程2.2.1直线和圆锥曲线的参数方程同步精练北师大版选修4_420171023324.doc
高中数学第2讲参数方程2.2直线和圆锥曲线的参数方程2.2.2_2.2.4直线和圆锥曲线的参数方程同步精练北师大版选修4_420171023325.doc
高中数学第2讲参数方程2.3参数方程化成普通方程同步精练北师大版选修4_4高中数学第2讲参数方程2.3参数方程化成普通方程同步精练北师大版选修4_420171023326.doc
高中数学第2讲参数方程2.4平摆线和渐开线同步精练北师大版选修4_420171023327.doc
  平面直角坐标系与曲线方程
  1已知平面内三点A(2,2),B(1,3),C(7,x),满足 ,则x的值为(  ).
  A.3      B.6      C.7      D.9
  2已知△ABC的底边BC长为12,且底边固定,顶点A是动点,且sin B-sin C= ,若以底边BC为x轴、底边BC的中点为原点建立平面直角坐标系,则点A的轨迹方程是(  ).
  A.         B. (x<-3)
  C.         D. (x<-3)
  3(2011•济宁高三模拟)椭圆 的一个焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标为(  ).
  A.       B.        C.       D.
  4平面内有一条固定线段AB,|AB|=4,动点P满足|PA|-|PB|=3,O为AB的中点,则|OP|的最小值是(  ).
  A.       B.       C.2      D.3
  5平面直角坐标系中,O为原点,已知两点A(4,1),B(-1,3),若点C满足 =m +n ,其中m,n∈[0,1],且m+n=1,则点C轨迹方程为__________.
  6在平面直角坐标系中,设点P(x,y),定义|OP|=|x|+|y|,其中O为坐标原点,对以下结论:①符合|OP|=1的点P的轨迹围成图形面积为2;②设P为直线 +2y-2=0上任意一点,则|OP|的最小值为1;③设P为直线y=kx+b(k,b∈R)上任意一点,则“使|OP|最小的点P有无数个”的必要不充分条件是“k=±1”.其中正确的结论有__________.(填序号)
  柱坐标系和球坐标系
  1设点M的直角坐标为(-1, ,2),则它的柱坐标是(  ).
  A.        B.
  C.        D.
  2设点P的直角坐标为(-1,-1, ),则它的球坐标为(  ).
  A.        B.
  C.       D.
  3如图,在柱坐标系中,长方体的两个顶点分别为A1(4,0,5), ,则此长方体的体积为(  ).
  A.100        B.120
  C.160        D.240
  4已知点N的球坐标为 ,则其直角坐标为(  ).
  A.(-2,2, )
  B. (2,-2, )
  C.(-2,-2, )
  D.(-2,2,- )
  5在柱坐标系中,已知A ,B 及O(0,0,0)三点,则△ABO的面积为__________.
  6已知点P1的球坐标是 ,点P2的柱坐标为 ,则|P1P2|2=__________.
  7在直三棱柱ABC—A1B1C1中,|CA|=|CB|=1,∠BCA=90°,棱|AA1|=2,M是A1B1的中点.建立适当的坐标系,求点M的空间直角坐标和柱坐标.
  8如图,在柱坐标系中,O(0,0,4),A(3,θA,4),B1(3,θB1,0),其中θA-θB1=60°,求直线AB1与圆柱的轴OO1所成的角和AB1的长.
  平摆线和渐开线
  1给出下列说法:
  ①圆的渐开线的参数方程不能转化为普通方程;
  ②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;
  ③在求圆的平摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;
  ④圆的渐开线和x轴一定有交点而且是唯一的交点.
  其中正确的说法有(  ).
  A.①③        B.②④
  C.②③        D.①③④
  2平摆线 (0≤t≤2π)与直线y=2的交点的直角坐标是(  ).
  A.(π-2,2)
  B.(3π+2,2)
  C.(π-2,2)或(3π+2,2)
  D.(π-3,5)
  3如图,ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中AE,EF,FG,GH…的圆心依次按B,C,D,A循环,它们依次相连接,则曲线AEFGH的长是(  ).
  A.3π      B.4π      C.5π      D.6π
  4我们知道关于直线y=x对称的两个函数互为反函数,则圆的平摆线 (φ为参数)关于直线y=x对称的曲线的参数方程为(  ).
  A. (φ为参数)
  B. (φ为参数)
  C.  (φ为参数)
  D. (φ为参数)
  5半径为3的圆的平摆线上某点的纵坐标为0,那么其横坐标为__________.
  6已知圆的方程为x2+y2=4,点P为其渐开线上一点,对应的参数 ,则点P的坐

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源