2015年各地中考数学真题精选汇编:点、直线与圆的位置关系
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约19110字。
点直线与圆的位置关系
一. 选择题
1.(2015•江苏南京,第6题3分)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( )
A. B. C. D.
【答案】A.
【解析】
试题分析:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中, ,∴ ,∴NM= ,∴DM= = ,故选A.
考点:1.切线的性质;2.矩形的性质.
2.(2015湖南岳阳第8题3分)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③ = ;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是( )
A. ①② B. ①②③ C. ①④ D. ①②④
考点: 切线的判定;相似三角形的判定与性质..
分析: 根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定 与 相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.
解答: 解:∵AB为直径,
∴∠ADB=90°,
∴BD⊥AC,
而AB=CB,
∴AD=DC,所以①正确;
∵AB=CB,
∴∠1=∠2,
而CD=ED,
∴∠3=∠4,
∵CF∥AB,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4,
∴△CBA∽△CDE,所以②正确;
∵△ABC不能确定为直角三角形,
∴∠1不能确定等于45°,
∴ 与 不能确定相等,所以③错误;
∵DA=DC=DE,
∴点E在以AC为直径的圆上,
∴∠AEC=90°,
∴CE⊥AE,
而CF∥AB,
∴AB⊥AE,
∴AE为⊙O的切线,所以④正确.
故选D.
点评: 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.
经过圆心.若∠B=20°,则∠C的大小等于( )
A. 20° B. 25° C. 40° D. 50°
考点: 切线的性质.
分析: 连接OA,根据切线的性质,即可求得∠C的度数.
解答: 解:如图,连接OA,
∵AC是⊙O的切线,
∴∠OAC=90°,
∵OA=OB,
∴∠B=∠OAB=20°,
∴∠AOC=40°,
∴∠C=50°.
故选:D.
点评: 本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.
3.(2015•广东广州,第3题3分)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是( )
A. 2.5 B. 3 C. 5 D. 10
考点: 切线的性质.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源