2013年全国各地中考数学试卷分类汇编:点、直线与圆的位置关系
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约18510字。
点直线与圆的位置关系
一.选择题
1.(2013白银,10,3分)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
A. B. C. D.
考点: 动点问题的函数图象;多边形内角与外角;切线的性质;切线长定理;扇形面积的计算;锐角三角函数的定义.
专题: 计算题.
分析: 连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC和扇形OBC的面积,即可求出答案.
解答: 解:连接OB、OC、OA,
∵圆O切AM于B,切AN于C,
∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC
∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°,
∵AO平分∠MAN,
∴∠BAO=∠CAO=α,
AB=AC= ,
∴阴影部分的面积是:S四边形BACO﹣S扇形OBC=2×× ×r﹣ =( ﹣ )r2,
∵r>0,
∴S与r之间是二次函数关系.
故选C.
点评: 本题主要考查对切线的性质,切线长定理,三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.
2.(2013贵州毕节,15,3分)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( )
A. 2,22.5° B. 3,30° C. 3,22.5° D. 2,30°
考点: 切线的性质;等腰直角三角形.
分析: 首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.
解答: 解:连接OA,
∵AB与⊙O相切,
∴OD⊥AB,
∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,
∴AO⊥BC,
∴OD∥AC,
∵O为BC的中点,
∴OD=AC=2;
∵∠DOB=45°,
∴∠MND=∠DOB=22.5°,
故选A.
点评: 此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
3.(2013•泰安,13,3分)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是 的中点,则下列结论不成立的是( )
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.
专题:计算题.
分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;
由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;
由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.
解答:解:A.∵点C是 的中点,∴OC⊥BE,
∵AB为圆O的直径,∴AE⊥BE,
∴OC∥AE,本选项正确;
B.∵ = ,∴BC=CE,本选项正确
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源