《方程的根与函数的零点》ppt26
- 资源简介:
共52张。本课件介绍了方程的根与函数的零点,内容充实,讲练结合,适合新课教学。含学案、测试题。
3.1.1 方程的根与函数的零点
一、选择题
1.已知函数f(x)在区间[a,b]上单调,且f(a)•f(b)<0则方程f(x)=0在区间[a,b]上( )
A.至少有一实根 B.至多有一实根
C.没有实根 D.必有唯一的实根
[答案] D
2.已知函数f(x)的图象是连续不断的,有如下的x、f(x)对应值表:
x 1 2 3 4 5 6
f(x) 123.56 21.45 -7.82 11.57 -53.76 -126.49
函数f(x)在区间[1,6]上的零点至少有( )
A.2个 B.3个
C.4个 D.5个
[答案] B
3.(2013~2014山东淄博一中高一期中试题)对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则f(x)在(a,b)上( )
A.一定有零点 B.可能有两个零点
C.一定有没有零点 D.至少有一个零点
[答案] B
[解析] 若f(x)的图象如图所示否定C、D
若f(x)的图象与x轴无交点,满足f(a)>0,f(b)>0,则否定A,故选B.
4.下列函数中,在[1,2]上有零点的是( )
A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5
C.f(x)=lnx-3x+6 D.f(x)=ex+3x-6
[答案] D
[解析] A:3x2-4x+5=0的判别式Δ<0,
∴此方程无实数根,∴f(x)=3x2-4x+5在[1,2]上无零点.
B:由f(x)=x3-5x-5=0得x3=5x+5.
在同一坐标系中画出y=x3,x∈[1,2]与y=5x+5,x∈[1,2]的图象,如图1,两个图
3.1.1 方程的根与函数的零点学案
学习目标
1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2. 掌握零点存在的判定定理.
学习过程
一、课前准备
(预习教材P86~ P88,找出疑惑之处)
复习1:一元二次方程 +bx+c=0 (a 0)的解法.
判别式 = .
当 0,方程有两根,为 ;
当 0,方程有一根,为 ;
当 0,方程无实根.
复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?
判别式 一元二次方程 二次函数图象
二、新课导学
※ 学习探究
探究任务一:函数零点与方程的根的关系
问题:
① 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .
② 方 程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .
③ 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .
根据以上结论, 可以得到:
一元二次方程 的根就是相应二次函数 的图象与x轴交点的 .
你能将结论进一步推广到 吗?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源