《不等式证明的基本方法》ppt(说课课件说课设计2份)

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中课件 / 必修四课件
  • 文件类型: ppt, doc
  • 资源大小: 1.28 MB
  • 资源评级:
  • 更新时间: 2014/12/8 20:48:38
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:
查看预览图
16张。约4060字。 高中数学选修4-5《1.5 不等式证明的基本方法》说课课件+说课设计(人教B版,2份)
  一、教材分析
  1.课标解读:了解间接证明的一种方法——反证法;了解反证法的思维过程与特点.
  2.教学目标:通过实例,引导学生认识反证法的特点,体会证明的必要性.
  3.教学重点:反证法的逻辑思维过程及逻辑思维方法.
  4.教学难点:反证法的应用,但是对证明的技巧性不宜作过高的要求.
  二、反证法的理论依据与教育意义
  法国数学家阿达玛曾说过:“反证法的证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法精辟的概括.反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真,所以反证法是以逻辑思维的基本规律和理论为依据的.反证过程中的批判思想更有助于学生正确的认识客观世界.在教学过程中,我们要重视培养学生利用反证法对客观世界的认识提出自己的问题,这正是反证法教学所要教给学生的,应该具有的数学能力,也是培养学生数学素质与数学素养的很好教学机会.
  三、教学思考
  1.引入部分:证明“设 为正整数,如果 是偶数,则 是偶数”.
  问题的提出应用了学生比较熟悉又可列举的正整数环境,学生比较容易想到用验证的方法先进行结论的检验,并且在验证的过程中体会整数平方运算的规律,从而寻找一般的并且严谨的证明方式。易于学生思考,同时也很好的激发了学生学习的动机和兴趣.同时严谨的证明对反证法定义的形成提供了强有力的思想支持,学生对一般的证明模式自然易于接受.
  一般地,由证明 转向证明 , 与假设矛盾,或者与某个真命题矛盾.从而判断 为假,推出 为真的方法,叫做反证法.
 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源