浙江省11市2012年中考数学试题分类解析汇编专题12:押轴题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约21860字。
浙江11市2012年中考数学试题分类解析汇编
专题12:押轴题
一、选择题
1.(2012浙江杭州3分)已知关于x,y的方程组 ,其中﹣3≤a≤1,给出下列结论:
① 是方程组的解;
②当a=﹣2时,x,y的值互为相反数;
③当a=1时,方程组的解也是方程x+y=4﹣a的解;
④若x≤1,则1≤y≤4.
其中正确的是【 】
A.①② B.②③ C.②③④ D.①③④
【答案】C。
【考点】二元一次方程组的解,解一元一次不等式组。
【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:
解方程组 ,得 。
∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。
① 不符合﹣5≤x≤3,0≤y≤4,结论错误;
②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;
③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;
④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4,
故当x≤1时,1≤y≤4,结论正确。,
故选C。
2.(2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【 】
A. B. C.3 D.4
3. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【 】
A. B.
C. D.
【答案】D。
【考点】动点问题的函数图象。
【分析】因为动点P按沿折线A→B→D→C→A的路径运动,因此,y关于x的函数图象分为四部分:A→B,B→D,D→C,C→A。
当动点P在A→B上时,函数y随x的增大而增大,且y=x,四个图象均正确。
当动点P在B→D上时,函数y在动点P位于BD中点时最小,且在中点两侧是对称的,故选项B错误。
当动点P在D→C上时,函数y随x的增大而增大,故选项A,C错误。
当动点P在C→A上时,函数y随x的增大而减小。故选项D正确。故选D。
4. (2012浙江丽水、金华3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【 】
A.2010 B.2012 C.2014 D.2016
【答案】D。
【考点】分类归纳(图形的变化类)。
【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解:
∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,
∴2016既是三角形数又是正方形数。故选D。
5. (2012浙江宁波3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【 】
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源