《有理数的大小比较》教案2
- 资源简介:
约1190字。
第7课时:有理数的大小比较
教学内容:
教科书第32—34页,2.5有理数的大小比较。
教学目的和要求:
1.使学生进一步巩固绝对值的概念。
2.使学生会利用绝对值比较两个负数的大小。
3.培养学生逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力。
教学重点和难点:
重点:利用绝对值比较两个负数的大小。
难点:利用绝对值比较两个异分母负分数的大小。
教学工具和方法:
工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.复习绝对值的几何意义和代数意义:
一个数a的绝对值就是数轴上表示数a的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2.复习有理数大小比较方法:
在数轴上,右边的数总比左边的数大;正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数。
二、讲授新课:
1.发现、总结:
①在数轴上,画出表示―2和―5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?
②我们发现:两个负数,绝对值大的反而小.
这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了。
2.例如,比较两个负数 和 的大小:
① 先分别求出它们的绝对值: = = , = =
② 比较绝对值的大小:
∵ ∴
③ 得出结论:
3.归纳:
联系到2.2节的结论,我们可以得到有理数大小比较的一般法则:
(1) 负数小于0,0小于正数,负数小于正数;
(2) 两个正数,应用已有的方法比较;
(3) 两个负数,绝对值大的反而小.
4.例题:
例1:比较下列各对数的大小:
①-1与-0.01; ② 与0; ③-0.3与 ; ④ 与 。
解:(1)这是两个负数比较大小,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源