初中奥数竞赛辅导资料之第一讲因式分解(一)

  • 手机网页: 浏览手机版
  • 资源类别: 通用 / 初中教案 / 竞赛辅导教案
  • 文件类型: doc
  • 资源大小: 58 KB
  • 资源评级:
  • 更新时间: 2010/12/6 18:44:17
  • 资源来源: 会员转发
  • 资源提供: liuyiming09 [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约4000字。

  第一讲 因式分解(一)
  多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.
  1.运用公式法
  在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
  (1)a2-b2=(a+b)(a-b);
  (2)a2±2ab+b2=(a±b)2;
  (3)a3+b3=(a+b)(a2-ab+b2);
  (4)a3-b3=(a-b)(a2+ab+b2).
  下面再补充几个常用的公式:
  (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
  (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
  (7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;
  (8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;
  (9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.
  运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.
  例1 分解因式:
  (1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;
  (2)x3-8y3-z3-6xyz;
  (3)a2+b2+c2-2bc+2ca-2ab;
  (4)a7-a5b2+a2b5-b7.
  解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)
  =-2xn-1yn[(x2n)2-2x2ny2+(y2)2]
  =-2xn-1yn(x2n-y2)2
  =-2xn-1yn(xn-y)2(xn+y)2.
  (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)
  =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).
  (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2
  =(a-b)2+2c(a-b)+c2
  =(a-b+c)2.
  本小题可以稍加变形,直接使用公式(5),解法如下:
  原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)
  =(a-b+c)2
  (4)原式=(a7-a5b2)+(a2b5-b7)
  =a5(a2-b2)+b5(a2-b2)
  =(a2-b2)(a5+b5)
  =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)
  =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)
  例2 分解因式:a3+b3+c3-3abc.
  本题实际上就是用因式分解的方法证明前面给出的公式(6).
  分析 我们已经知道公式
  (a+b)3=a3+3a2b+3ab2+b3
  的正确性,现将此公式变形为
  a3+b3=(a+b)3-3ab(a+b).
  这个 式也是一个常用的公式,本题就借助于它来推导.
  解 原式=(a+b)3-3ab(a+b)+c3-3abc
  =[(a+b)3+c3]-3ab(a+b+c)
  =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
  =(a+b+c)(a2+b2+c2-ab-bc-ca).
  说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为
  a3+b3+c3-3abc
  显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.
  如果令x=a3≥0,y=b3≥0,z=c3≥0,则有
  等号成立的充要条件是x=y=z.这也是一个常用的结论.

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源