数论的方法技巧
- 资源简介:
约6450字。
初一数学竞赛讲座
第1讲 数论的方法技巧(上)
数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:
1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即
其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:
d(n)=(a1+1)(a2+1)…(ak+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法
对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。这些常用的形式有:
1.十进制表示形式:n=an10n+an-110n-1+…+a0;
2.带余形式:a=bq+r;
4.2的乘方与奇数之积式:n=2mt,其中t为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字?
解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位数可以写成:1000a3+100a2+10a1+a0,它的各位数字之和的10倍是10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,这个四位数与它的各位数字之和的10倍的差是:990a3+90a2-9a0=1998,110a3+10a2-a0=222。
比较上式等号两边个位、十位和百位,可得a0=8,a2=1,a3=2。
所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。
例2 在一种室内游戏中,魔术师请一个人随意想一个三位数 (a,b,c依次是这个数的百位、十位、个位数字),并请这个人算出5个数 与
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源