共1450字。
9.6空间向量的夹角和距离公式
南昌大学附属中学 高莹
三维目标:
知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、
夹角公式、两点间距离公式、中点坐标公式,并会用这些公式
解决有关问题;
⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.
过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”.
情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;
⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情.
教学重点:夹角公式、距离公式.
教学难点:数学模型的建立.
关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空间向量的坐标.
教具准备:多媒体投影,实物投影仪.
教学过程:
(一) 创设情境,新课导入
2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题.
引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s的速度前进,小船以1 m/s的速度由南向北匀速行驶,现在火炬手在桥上 点以东30米的 点处,小船在水平D点以南方向30米的A处(其中 ⊥水面)
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源