约1620字。
《展开与折叠》教案
【学习目标】
1.经历展开与折叠、模型制作等活动,发展学生的空间观念,积累数学活动经验.
2.在操作活动中认识棱柱的某些特性.
3.了解棱柱、圆柱、圆锥的侧面展开图,并能根据展开图判断和制作简单的立体模型.
【基础知识精讲】
1.棱柱的分类
我们已经了解了棱柱,那么棱柱之间是否还有区别呢?
通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.
2.棱柱的特点
若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?
(1)棱柱的上、下底面是完全相同且互相平行的多边形.
(2)棱柱的侧面都是矩形.
(3)棱柱的侧棱长都相等.
(4)棱柱各元素间的数量关系如下:
名称 底面形状 顶点数 棱数 侧棱数 侧面数 侧面形状 总面数
n棱柱 n边形 2n个 3n个 n条 n个 长方形 (n+2)个
3.部分几何体的平面展开图.
将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?
(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).
图1—9
(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).
图1—10
(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)
图1—11
4.能折成棱柱的平面图形的特征
我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:
(1)棱柱的底面边数=侧面数.
(2)棱柱的两个底面要分别在侧面展开图的两端.
(3)四棱柱的平面展开图中只有5条相连的棱.
5.正方体的平面展开图
在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.为了查阅方便,在此列出正方体的十一种展开图,供大家参考.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源