约4040字 2.2.3独立重复实验与二项分布
教学目标:
知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题
教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件 发生的频率 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件 的概率,记作 .
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为 ,不可能事件的概率为 ,随机事件的概率为 ,必然事件和不可能事件看作随机事件的两个极端情形
5 基本事件:一次试验连同其中可能出现的每一个结果(事件 )称为一个基本事件
6.等可能性事件:如果一次试验中可能出现的结果有 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是 ,这种事件叫等可能性事件
7.等可能性事件的概率:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率
8.等可能性事件的概率公式及一般求解方法
9.事件的和的意义:对于事件A和事件B是可以进行加法运算的
10 互斥事件:不可能同时发生的两个事件.
一般地:如果事件 中的任何两个都是互斥的,那么就说事件 彼此互斥
11.对立事件:必然有一个发生的互斥事件.
12.互斥事件的概率的求法:如果事件 彼此互斥,那么
=
13.相互独立事件:事件 (或 )是否发生对事件 (或 )发生的概率没有影响,这样的两个事件叫做相互独立事件
若 与 是相互独立事件,则 与 , 与 , 与 也相互独立
14.相互独立事件同时发生的概率:
一般地,如果事件 相互独立,那么这 个事件同时发生的概率,等于每个事件发生的概率的积,
二、讲解新课:
1 独立重复试验的定义:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源