《反比例函数》专题训练卷
- 资源简介:
约45000字。
反比例函数
一、选择题
1. ( 2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y= (m≠0)的图象可能是( )
A. B. C. D.
考点: 反比例函数的图象;一次函数的图象.
分析: 先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.
解答: 解:A、由函数y=mx+m的图象可知m>0,由函数y= 的图象可知m>0,故本选项正确;
B、由函数y=mx+m的图象可知m<0,由函数y= 的图象可知m>0,相矛盾,故本选项错误;
C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;
D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;
故选:A.
点评: 本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+ 与反比例函数y= 在同一坐标系内的大致图象是( )
A. B. C. D.
考点: 二次函数的图象;一次函数的图象;反比例函数的图象.
分析: 先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.
解答: 解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣ >0,
∴b<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴一次函数y=cx+ 的图象过第二、三、四象限,反比例函数y= 分布在第二、四象限.
故选B.
点评: 本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣ ;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.
3.(2014年天津市,第9 题3分)已知反比例函数y= ,当1<x<2时,y的取值范围是( )A. 0<y<5 B. 1<y<2 C. 5<y<10 D. y>10
考点: 反比例函数的性质.
分析: 将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.
解答: 解:∵反比例函数y= 中当x=1时y=10,当x=2时,y=5,
∴当1<x<2时,y的取值范围是5<y<10,
故选C.
点评: 本题考查了反比例函数的性质:(1)反比例函数y= (k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源