《二倍角公式》单元测试题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共18题,约1310字。
《二倍角公式》单元测试题
1.若sinα=35,α∈(-π2,π2),则cos(α+5π4)=________.
解析:由于α∈(-π2,π2),sinα=35得cosα=45,由两角和与差的余弦公式得:cos(α+5π4)=-22(cosα-sinα)=-210.
2.已知π<θ<32π,则 12+12 12+12cosθ=________.
解析:∵π<θ<3π2,∴π2<θ2<3π4,π4<θ4<3π8.
12+12 12+12cosθ= 12+12 cos2θ2
= 12-12cosθ2=sinθ4.
3.计算:cos10°+3sin10°1-cos80°=________.
解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin240°=2cos50°2sin40°=2.
4.函数y=2cos2x+sin2x的最小值是__________________.
解析:y=2cos2x+sin2x=sin2x+1+cos2x=sin2x+cos2x+1
=2sin(2x+π4)+1≥1-2.
5.函数f(x)=(sin2x+12010sin2x)(cos2x+12010cos2x)的最小值是________.
解析:f(x)=(2010sin4x+1)(2010cos4x+1)20102sin2xcos2x
=20102sin4xcos4x+2010(sin4x+cos4x)+120102sin2xcos2x
=sin2xcos2x+201120102sin2xcos2x-22010≥22010(2011-1).
6.若tan(α+β)=25,tan(β-π4)=14,则tan(α+π4)=_____.
解析:tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=25-141+25×14=322.
7.若3sinα+cosα=0,则1cos2α+sin2α的值为________.
解析:由3sinα+cosα=0得cosα=-3sinα,则1cos2α+sin2α=sin2α+cos2αcos2α+2sinαcosα=9sin2α+sin2α9sin2α-6sin2α=103.
8.设a=sin14°+cos14°,b=sin16°+cos16°,c=62,则a、b、c的大小关系是
解析:a=2sin59°,c=2sin60°,b=2sin61°,∴a<c<b.
或a2=1+sin28°<1+12=32,b2=1+sin32°>1+12=32,c2=32,∴a<c<b.
9.2+2cos8+21-sin8的化简结果是________.
解析:原式=4cos24+2(sin4-cos4)2=|2cos4|+2|sin4-cos4|=-2sin4.
10.若tanα+1tanα=103,α∈(π4,π2),则sin(2α+π4)的值为_________.
解析:由题意知,tanα=3,sin(2α+π4)=22(sin2α+cos2α),而sin2α=2tanα1+tan2α=35,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源