《二次函数的图象和性质》教学设计1
- 资源简介:
约2090字。
《二次函数的图象和性质》教学设计方案
北京市育英学校江丽华
课程名称 《二次函数y=ax2的图象和性质》
教学目标 知识技能:
会用列表描点法画二次函数y=ax2(a≠0)的图象;结合图象初步理解抛物线的开口方向,对称轴,顶点及y随x的变化情况,体会其性质;
过程与方法:
让学生自己尝试去画y=x2和y=-x2图象,在经历中逐步完善用描点法画y=ax2的步骤;在画图过程中引导学生去观察y=x2和y=-x2的图象,发现其性质,并能自己归纳概括出y=ax2的性质,从而经历知识的归纳和探究过程,体会从特殊到一般,类比、分类讨论的思想。
情感态度价值观:
通过画函数图象,并借助图象研究函数性质,体验数与形的内在联系,感受函数图象的简洁美,对称美;在探究二次函数图象和性质的活动中,渗透与他人交流,合作的意识和探究精神,培养学生探索、观察、发现的良好品质以及克服困难的毅力,并学会归纳总结自己的结论,体会成功的喜悦,加强继续学习的兴趣。
教学重点 y=x2和y=-x2的图象和性质。
教学难点 结合图象理解抛物线开口方向、对称轴、顶点坐标及基本性质,并归纳总结出来.
问题与情景 师生行为 设计意图
活动1:
问题1:一次函数y=kx+b和反比例函数 (k≠0)图象是什么形状?有哪些性质呢?
那么二次函数y=ax2+bx+c(a≠0)的图象会是什么样?通常怎样画一个函数的图像呢?------引入课题
教师提出问题,学生独立思考
教师重点关注:
§1学生能否联想到研究函数的方法从特殊到一般的,分类的思想
§2学生能否正确使用“描点法”的方法来画图像,能否说出“描点法”的基本步骤:列表、描点、连线
§3引入课题后,分析研究
远期目标是:y=ax2+bx+c(a≠0)的图象
近期目标是:y=ax2的图象
实现方法是: y=x2的图像 通过创设问题情景,引导学生复习描点法,复习借助图像分析性质的过程中注意分类讨论、由特殊到一般的解决问题的方法,为学习二次函数的图像奠定基础
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源