《一元一次方程的概念》教学设计
- 资源简介:
约3940字。
《一元一次方程的概念》教学设计
教材:人教版义务教育课程标准实验教科书数学七年级上册第二章第一节
【教学目标】
1、通过对多个实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
【教学重点、难点】使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.
【教学方法】启发式讲授法
【教学过程】
问题与情境 师生活动 设计意图
[阶段1] 情境导入
回顾旧知
今年进行的德国世界杯足球赛,吸引了全球的目光.你喜欢足球吗?下面来看一个与足球场有关的问题.
引例 德国世界杯足球赛莱比锡赛场为长方形的足球场,周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?
教师给出引例,带领学生进入到实际问题的情境中.
1、算术方法:
足球场长与宽的和为 310÷2=155(米).
由和差关系,得
足球场的长度为(155+25)÷2=90(米),宽度为90-25=65(米).
2、方程方法:
设足球场的长度为 米,
那么足球场的宽度能用含 的式子表示为 米.
根据“长方形的周长=(长+宽)×2”,列出方程: .
教师指出,如何解出方程中的未知数 ,是今后要学习的知识.
然后,请学生回顾方程的概念:含有未知数的等式,叫做方程.
教师引导学生总结引例的研究方法,启发学生比较算术方法和方程方法的区别:
用算术方法解决问题时,只能用已知数,而用方程方法解题时用字母表示的未知数也可以参与运算.
算术方法主要运用逆向思维,列方程主要运用正向思维.
依据新课程的理念,教师要创造性地使用教材.作为引入本课的第一个例子,选用了“世界杯足球赛赛场问题”,以激发学生的学习兴趣,而且设置了符合学生认知水平的问题情境,以达到由浅入深、逐步提高的目的.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源