《从自然数到有理数》全章教案
- 资源简介:
约7720字。
《从自然数到有理数》全章教案
1.1从自然数到分数
一、教学目标:
1 .回顾小学中关于“数”的知识;
2 .理解自然数、分数的产生和发展的实际背景和必然性;
3 .体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。
二、教学重点和难点
重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。
难点:本节的“合作学习”中的第2题学生不易理解。
三、教学手段:现代课堂教学手段
四、教学方法:启发式教学
五、教学过程
(一)自然数的由来和作用。
请阅读下面这段报道:
世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。
你在这段报道中看到了哪些数?它们都属于哪一类数?
在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨海大桥等。
计数简单的理解,可以看成用来统计的结果的自然数。而测量的结果的自然数是用工具测量。
让学生举出一些实际生活的例子,并说明这些自然数起的作用。
练习,并有学生回答,及时校对。
做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?
(1)2002年全国共有高等学校2003所;
(2)小明哥哥乘1425次列车从北京到天津;
(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。
练一练:
(二)讲解分数的由来及应用。
在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。在解答下列问题时,你会选用哪一类数?为什么?
(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?
(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?
分数可以看作两个整数相除,例如, =3/5=0.6, =0.3,1.31= ,0.0062= = 。
伴随着数的概念而来的是数的运算,数的运算是人们分析、判断和解决实际问题的重要手段。
完成“合作学习”(见课本)你能帮小慧列出算式吗?如果利用自然数怎样列算式?用分数呢?
例、某市民政局举行一次福利彩票销售活动,销售总额度为4000万元。其中发行成本占总额度的15%,1400万元作为社会福利资金,其余作为中奖着奖金。
(1)你能算出奖金总额是多少吗?你是怎样算的?
(2)为了使福利资金提高10%,而发行的成本保持不变,有人提出把奖金总额减小6%。你认为这个方案可行吗?你是怎样获得结论的?
上面问题2中的第(2)题可以用如下算式求解:
2000×6%-1400×10%=120-140
算式中被减数小于减数,在这种情况下,能否进行运算?能否用我们已经学过的自然数和分数来表示结果?看来数还需作进一步的扩展。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源