2010年中考数学试题分类汇编——圆中的计算
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约5870字。
2010年中考数学试题分类汇编——圆中的计算
(2010哈尔滨)1.将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是 度.150
(2010红河自治州)14. 已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为 120° .
(2010红河自治州)23.(本小题满分14分)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA= cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以 cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.
(1)求∠OAB的度数.
(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.
(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.
解:(1)在Rt△AOB中:
tan∠OAB=
∴∠OAB=30°
(2)如图10,连接O‘P,O‘M. 当PM与⊙O‘相切时,有∠PM O‘=∠PO O‘=90°,
△PM O‘≌△PO O‘
由(1)知∠OBA=60°
∵O‘M= O‘B
∴△O‘BM是等边三角形
∴∠B O‘M=60°
可得∠O O‘P=∠M O‘P=60°
∴OP= O O‘•tan∠O O‘P
=6×tan60°=
又∵OP= t
∴ t= ,t=3
即:t=3时,PM与⊙O‘相切.
(3)如图9,过点Q作QE⊥x于点E
∵∠BAO=30°,AQ=4t
∴QE= AQ=2t
AE=AQ•cos∠OAB=4t×
∴OE=OA-AE= - t
∴Q点的坐标为( - t,2t)
S△PQR= S△OAB -S△OPR -S△APQ -S△BRQ
=
=
= ( )
当t=3时,S△PQR最小=
(4)分三种情况:如图11.
○1当AP=AQ1=4t时,
∵OP+AP=
∴ t+4t=
∴t=
或化简为t= -18
○2当PQ2=AQ2=4t时
过Q2点作Q2D⊥x轴于点D,
∴PA=2AD=2A Q2•cosA= t
即 t+ t =
∴t=2
○3当PA=PQ3时,过点P作PH⊥AB于点H
AH=PA•cos30°=( - t)• =18-3t
AQ3=2AH=36-6t
得36-6t=4t,
∴t=3.6
综上所述,当t=2,t=3.6,t= -18时,△APQ是等腰三角形.
(2010年镇江市)14.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( A )
A.8 B.9 C.10 D.11
(2010遵义市)如图,已知正方形的边长为 ,以对角的两个顶点为圆心, 长为半径画弧,则所得到的两条弧的长度之和为 ▲ (结果保留 ).
答案:
(2010遵义市)26.(12分)如图,在△ABC中,∠C= ,AC+BC=8,点O是
斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于
点D、E.
(1)当AC=2时,求⊙O的半径;
(2)设AC= ,⊙O的半径为 ,求 与 的函数关系式.
26.(12分)(1)(5分) 解: 连接OD、OE、OC
∵D、E为切点
∴OD⊥AC, OE⊥BC, OD=OE
∵
∴ AC•BC= AC•OD+ BC•OE
∵AC+BC=8, AC=2,∴BC=6
∴ ×2×6= ×2×OD+ ×6×OE
而OD=OE,
∴OD= ,即⊙O的半径为
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源