《利用导数研究函数的单调性》教案
- 资源简介:
约1760字。
《利用导数研究函数的单调性》教案
教学目标:
1.了解可导函数的单调性与其导数的关系;
2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;
教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度 随时间 变化的函数 的图像,图3.3-1(2)表示高台跳水运动员的速度 随时间 变化的函数 的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1) 运动员从起点到最高点,离水面的高度 随时间 的增加而增加,即 是增函数.相应地, .
(2) 从最高点到入水,运动员离水面的高度 随时间 的增加而减少,即 是减函数.相应地, .
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源