2010年中考数学二轮复习专题水平测试30——操作性问题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共18道小题,约4640字。
2010年中考数学二轮复习专题水平测试30——操作性问题
卫华生
1.(2009年江苏省)(1)观察与发现小明将三角形纸片 沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到 (如图②).小明认为 是等腰三角形,你同意吗?请说明理由.
(2)实践与运用
将矩形纸片 沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点 处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中 的大小.
2.(2009年铁岭市)如图所示,在 中, .
(1)尺规作图:作线段 的垂直平分线 (保留作图痕迹,不写作法);
(2)在已作的图形中,若 分别交 及 的延长线于点 ,连接 .
求证: .
3.(2009年杭州市)如图,已知线段 .
(1)只用直尺(没有刻度)和圆规,求作一个直角三角形ABC,以AB和BC分别为两条直角边,使AB= ,BC= (要求保留作图痕迹,不必写出作法);
(2)若在(1)作出的RtΔABC中,AB=4cm,求AC边上的高.
4.(2009年台州市)定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1, , ,则点 就是四边形 的准内点.
(1)如图2, 与 的角平分线 相交于点 .
求证:点 是四边形 的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.
(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.( )
②任意凸四边形一定只有一个准内点.( )
③若 是任意凸四边形 的准内点,则
或 .( )
5.(2009年宁波市)(1)如图1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是 .
(2)如图2,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图3中,并写出这个图形的边数.
(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?
6.(2009年义乌)(1)如图1,正方形网格中有一个平行四边形,请在图1中画一条直线把平行四边形分成面积相等的两部分;
(2)把图2中的平行四边形分割成四个全等的四边形(要求在图2中画出分割线),并把所得的四个全等的四边形在图3中拼成一个轴对称图形或中心对称图形,使所得图形与原图形不全等且各个顶点都落在格点上。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源