约3510字。
《实数》教学设计
乐清市柳市镇二中 金乐双
(一)教学目标
1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2让学生体验用有理数估计一个无理数的大致范围的过程,掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法
3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点
(二)教材分析
“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。由 、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。
重点:无理数、实数的意义,在数轴上表示实数。
难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
(三)学生分析
学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。但对七年级学生来讲,思维仍较直观,无理数显得比较抽象,难以理解。对 的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。
(四)设计理念
让学生主动参与合作交流, 探索、发现,注重知识形成的过程
(五)教学方法
启发式、探索式教学
(六)教学过程
1 复习旧知,揭示矛盾,引入概念
回顾书本 3 .1探究活动(图3.2),复习前面所学的有理数的分类, 既然在1与2之间就不是整数,也不是分数,因为如果是分数的话它的平方也应是分数,也就是说 不是有理数,但由此题可知 确实是存在的,同时π也是如此。
出现矛盾以后,本课以 为例,从 开始,来探索无理数的特征,学习实数。
1.2 联系实际创设问题情境:
如果你是布料销售店的售货员,假设我要买剪 米布,你将会给我剪多少比较合适?
学生能从上节的图3-2中估计 在1与2之间
引导学生借助计算器进行合作学习:
(1) 根据上节课 1< <2,确定√2=1.…
(2) 确定小数点后第一位数
计算1.12 1.22 1.32 1.42 1.52
1.42 =1.96 <2 1.52 =2.25>2 就不必再算下去了 很明显1.4< <1.5 。
也有学生可根据以往经验马上由1.42 =1.96 <2 1.52 =2.25>2得到1.4< <1.5。
根据以上得: =1.4…
(3) 再求下一位 计算1.412 1.422 等
=1.41…
到此为止,能解决上面问题, 大约剪1.4 米 或1.41米就可以了。
1.3 继续探索 特征,得到无理数概念
以上得到的1.4,1.41仅是 的近似值, 究竟是多少?在解决此问题后, 又出现了新疑点。这样激发学生沿着以上思路继续合作学习,结合书本p71的表格,探索 特征。再问:通过以上的探索同学们有什么感受?体验到了什么?学生能在对有理数的已有认知的基础上,知道 确实不同于前面所学的有理数,总结 的特征:无限、不循环,得到无理数的概念。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源