2010年复习必备中考专题——抛物线与三角形面积
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约1130字。
2010年复习必备中考专题——抛物线与三角形面积
抛物线与三角形面积问题涉及代数、几何知识,有一定难度。本文通过举例来谈这类题的解法。
一、顶点在抛物线y=ax2+bx+c的三角形面积的一般情况有:
(1)、以抛物线与x轴的两交点和抛物线的顶点为顶点的三角形,其底边的长是抛物线与x轴两交点间的距离,高的长是抛物线顶点的纵坐标的绝对值。其面积为:
SΔ= |x1-x2|•| |= • •| |
(2)、以抛物线与x轴、y轴的三个交点为顶点的三角形。其底边的长是抛物线与x轴两交点间的距离,高的长是抛物线与y轴上的截距(原点与y轴交点构成的线段长)的绝对值。其面积为:
SΔ= •|x1-x2|•|c|= • •|c|
(3)、三角形三个顶点在抛物线其他位置时,应根据图形的具体特征,灵活运用几何和代数的有关知识。
二、 1.求内接于抛物线的三角形面积。
例1.已知抛物线的顶点C(2, ),它与x轴两交点A、B的横坐标是方程x2-4x+3=0的两根,求ΔABC的面积。
解:由方程x2-4x+3=0,得x1=1, x2=3,
∴ AB=|x2-x1|=|3-1|=2.
∴ SΔABC= ×2× = .
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源