2013年浙江省宁波市中考数学试卷(解析版)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共26道小题,约9080字。
2013年浙江省宁波市中考数学试卷
一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)
1.(3分)(2013•宁波)﹣5的绝对值为( )
A. ﹣5 B. 5 C. ﹣ D.
考点: 绝对值.
分析: 根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.
解答: 解:﹣5的绝对值为5,
故选:B.
点评: 此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.(3分)(2013•宁波)下列计算正确的是( )
A. a2+a2=a4 B. 2a﹣a=2 C. (ab)2=a2b2 D. (a2)3=a5
考点: 幂的乘方与积的乘方;合并同类项.
分析: 根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.
解答: 解:A、a2+a2=2a2,故本选项错误;
B、2a﹣a=a,故本选项错误;
C、(ab)2=a2b2,故本选项正确;
D、(a2)3=a6,故本选项错误;
故选:C.
点评: 本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.
3.(3分)(2013•宁波)下列电视台的台标,是中心对称图形的是( )
A. B. C. D.
考点: 中心对称图形.
分析: 根据中心对称图形的概念对各选项分析判断后利用排除法求解.
解答: 解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项正确.
故选D.
点评: 本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.
4.(3分)(2013•宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )
A. B. C. D.
考点: 概率公式.
分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
解答: 解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,
从中随机摸出一个,则摸到红球的概率是 =.
故选:D.
点评: 本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
5.(3分)(2013•宁波)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为( )
A. 7.7×109元 B. 7.7×1010元 C. 0.77×1010元 D. 0.77×1011元
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答: 解:77亿=77 0000 0000=7.7×109,
故选:A.
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.(3分)(2013•宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为( )
A. 5 B. 6 C. 7 D. 8
考点: 多边形内角与外角.
分析: 利用多边形的外角和360°,除以外角的度数,即可求得边数.
解答: 解:多边形的边数是:360÷72=5.
故选A.
点评: 本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.
7.(3分)(2013•宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是( )
A. 内含 B. 内切 C. 相交 D. 外切
考点: 圆与圆的位置关系.
分析: 由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答: 解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5,
又∵2+3=5,
∴这两个圆的位置关系是外切.
故选D.
点评: 此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
8.(3分)(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的( )
A. 6 B. 8 C. 10 D. 12
考点: 三角形中位线定理;三角形三边关系.
分析: 本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了.
解答: 解:设三角形的三边分别是a、b、c,令a=4,b=6,
则2<c<10,14<三角形的周长<20,
故7<中点三角形周长<10.
故选B.
点评: 本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.
9.(3分)(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源