《二次函数图象与性质》说课稿
- 资源简介:
约2470字。
《二次函数图象与性质》说课教案
教材分析:
在日常生活,参加生产和进一步学习的需要看,有关函数的知识是非常重要的。例如在讨论社会问题、经济问题时越来越多地运用数学的思想方法,函数的内容在其中有相当的地位,二次函数更是重中之重。而在本节课之前,学生已学习了二次函数的概念和二次函数y=ax 、y=ax +h、y=a(x-h) (a≠0)的图象和性质。因此本课的教学是在学生学过二次函数知识的基础上,运用图象变换的观点把二次函数y=ax2的图象经过一定的平移变换,而得到二次函数y=a(x-h) +k (h≠0,k≠0)的图象。从特殊到一般,最终得到二次函数
y=ax +bx+c的图象。这样不仅符合学生的认知规律,而且还使学生进一步体会了数形结合的思想方法,培养了学生的创造性思维的能力和动手实践能力,突出体现了辩证唯物主义观点。
设计理念:
根据《新课程标准》,本节课设计时体现“问题情境创设—建立数学模型—解释、应用—回顾、延伸”的教学理念。特别在探究时通过学生动手操作和教师课件演示,让学生经历了知识的形成、发展与应用的过程,在教学过程中,鼓励学生自主探究与合作交流,引导学生观察、猜想、验证、推理与交流等数学活动。关注学生个体差异,使不同的学生得到不同程度的发展,及时给予鼓励性评价;让学生主动参与,在活动中感悟,在问题中创造,在讨论中生成、发展。努力呈现有利于学生理解和掌握相关的知识和方法,形成良好的数学思维品质。教师应向引导者、参与者、合作者的角色转变。
教学目标:
1、知识与技能:使学生掌握二次函数y=a(x-h) +k的图象的作法及性质,进一步了解二次函数y=a(x-h) +k (h≠0,k≠0)与二次函数y=ax (a≠0)图象的位置关系;
2、过程与方法:通过引导学生作图、观察、分析进一步理解二次函数图象与性质;
3、情感态度价值观:向学生渗透事物总是不断运动、变化和发展的观点;进一步培养学生数形结合的思想和动手操作能力。
教学策略:应用“指导--自主”学习。
重点和难点:
重点:掌握二次函数y=a(x-h) +k(h≠0,k≠0)图象的作法和性质;
难点:二次函数y=ax 的图象向二次函数y=a(x-h) +k(h≠0,k≠0)的图象的转化过程。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源